吃,就赶到了斯坦福,向詹姆森教授询问应对策略。
“教授,你怎么看?”
COMSOL常驻美国的负责人克劳斯·黑尔茨看着久久没有开口的詹姆森,试探着打破了沉默。
“很不错的模型。”
詹姆森上来就是一句赞扬。
这让黑尔茨差点心肺暂停。
只不过,前者紧接着就话锋一转:
“但也只是在理论层面上。”
只能说,詹姆森是懂欲抑先扬的。
在不到一秒钟时间里经历了一番大起大落的黑尔茨也没工夫吐槽这个,赶紧问道:
“所以,教授你的意思是……这个算法要实现起来还有很多困难?”
“没错。”
詹姆森松开鼠标,转身看向坐在身后不远处的黑尔茨:
“用LSM,哦,也就是这个水平集方法模拟变形界面上蒸发、雾化和燃烧,确实相比于经验蒸汽层模型和简单传热模型更加贴近实际。”
“但落实在具体的算法实现上……传统的网格划分,我指的是,甚至包括拉格朗日网格法这样的移动网格,都很难满足这篇论文中对于网格生成精度和速度的要求。”
“要知道,绝大多数两相流界面,本身就是随时间而高速变化的,原本的LSM法不严格守恒,在针对1秒以上的长时间模拟中根本无法保证精度。”
“而常教授的这个新算法,虽然在处理带发散自由速度场的二相流问题时实现了守恒,但笛卡尔坐标系下的生成效率又要降低……”
说到这里,前者摘掉眼镜,揉了揉有些酸胀的眼角:
“当然,这篇论文还是预印本,里面关于算法的具体实现过程涉及不多,但除非计算机的运算速度相比现在出现3-4个数量级的提升,否肯定没办法解决长轴距时间参数下的CFD问题,所以我推测作者可能是找到了某种特定的条件作为算例,才得到了文章里那么漂亮的结果……”
“你们知道,就算是N-S方程,人们都已经找到上百个特定情况下的解析解了,以常教授的数学水平而言,我想这并不困难……”
“……”
应该说,詹姆森不愧为上个时代最优秀的CFD专家。
他几乎是在短短二十分钟里,就一眼看出了常浩南论文中最薄弱的部分。
也就是笛卡尔坐标系下的网格生成效率。
只不过,毕竟已经是“上个时代”的CFD
本章未完,请点击下一页继续阅读!