这道应用题,陈婤知道如何算,她一边说一边提笔写算式:“用本金连续乘以每年的...”
“所以计算过程是:100000× 1.01 × 1.09 × 1.06 × 1.02×1.15 = 136883.70。”
尉迟明月点点头,又说:“还有另外一种方法来算,你知道么?”
陈婤想了想:“呃..用平均值?”
她见对方点头,于是提笔写另一个算式:“我们应该‘平均’这五年的利率...“
“若写成算式,应该是(0.01 +0.09 +0.06 +0.02 +0.15)÷ 5 =0.066 ,也就是6.6%...”
陈婤拿起一个新式乘方计算器(手摇式),摇起来:“然后我们将平均利率代入复利计算公式:100000×(1.066^ 5 - 1)+ 100000 = 137653.11...哎?怎么...怎么多了七百...七百余文?”
她放下计算器,疑惑的看着尉迟明月。
“你也发现不对了吧?问题出在哪里呢?”尉迟明月先问后答,“这种算法犯了一个常见的错误:把加法操作应用于相乘过程,得出的结果当然不准。”
尉迟明月说完,又拿出一张纸开始列算式:“那么,我们试试用几何平均数计算平均年利率...“
“1.01 × 1.09× 1.06 ×1.02 × 1.15 = 1.368837042”
“将结果开5次方根,那就得到几何平均数....”
尉迟明月用一台新式开根号计算器(手摇式)计算,摇了一会,算得结果为:1.064805657,约为1.0648。
再摇起那台乘方计算器:“我们将这个几何平均数代入复利计算公式:100000 ×(1.0648 ^ 5 - 1)+ 100000 = 136883.70“
“看看,这不就和逐年计算所得的结果一样么。”
陈婤仔细的看了许久,最后恍然大悟:“原来如此!”
陈婤经常往日兴昌银行存钱,基于对日兴昌的绝对信任,她都是让业务员给出存款到期后本金加利息的总和,所以,不清楚具体的平均数算法。
尉迟明月笑道:“所以呀,不能一看到‘平均’二字,就简单的将数据相加然后除以数据的总数,那样算出来的是算术平均值,而许多地方要用的是几何平均值
本章未完,请点击下一页继续阅读!