功,自然是康托的错误。”
“嘿……”叶非好笑:“这人真鸡贼,这不妥妥的标题党吗!”
“嗯……”叶非沉吟片刻,突然眼前一亮:“倒是可以这样解啊!”
“虽然不能完全证明出连续统假设,但这个思路也许能解出一些小问题。”
说完,叶非在下面留言。
【证明:首先证明,因为对于任一x∈s,令ƒ(x)={x},且x1≠x2时……】
北丽国,麻省理工博士生宿舍!
一位黄皮肤青年,正撑着下巴无聊的看着电脑屏幕上,等待有人回他消息。
青年叫高飞,夏国人,麻省理工博士。
他主要研究的东西不是集合论,只是最近有研究触及到集合论了。
研究集合论自然要研究连续统假设。
所以,在两个小时前,他发了一篇关于实数集合的帖子到Stack Exchange。
为了吸引流量,他特意写康托在集合论中有错误,他经常这么做,屡试不爽,每次都能吸引一大波人。
偶尔能吸引来某位大佬的留言,能让他对数学的研究豁然开朗。
修长的手指滑动着鼠标滚轴,浏览着网页。
“嗯?”他突然停住动作,直起身子,定眼看去。
“用罗素悖论证明实数集合不可数?”
他双眸闪烁,拿过一旁的纸笔计算。
片刻后,他兴奋的道:“就是如此,但他说的并不完美,还应该如此。”
他快速在叶非的留言下留言。
【感谢你的回复,让我找到灵感,但我觉得还应该进行如下补充。
假若x∈s成立,根据(3)式中对s中元素的要求……
……
假若x∉s,由s=φ(x)得x∉φ(x)……】
他刚发出不到十分钟,就收到回复。
高飞惊讶:“这么快?”
“看样子他也和我一样,守在电脑前,很期待答案吧!”
【感谢你的补充,但我也想对下面进行补充。
不论x是否属于s,都导致矛盾……】
高飞看完后笑道:“这想法很好。”
说完他又拿过纸笔计算,想了片刻后回复对方。
叶非看完后也想了片刻回复。
两人你来我往的回复,他们都不知道互相是谁,但此时却好似找到心灵上
本章未完,请点击下一页继续阅读!